Reactions: Classical and Organometallic Mechanisms

Reactions at M-bound Ligands:

Electrophilic attack

Nucleophilic attack

Ligand Exchange Reactions

Associative

Dissociative

Trans effect (Pt(2+), square planar complexes)

Cis effect (metal carbonyls)

Migration or Migratory Insertion

Deinsertion (esp 8-Hydride elimination)

Oxidative Addition

Reductive Elimination

Water Exchange Rates

Timescale	e*	Process	Example
10 ⁸ s		Ligand exchange (inert complex)	$[Cr(OH_2)_6]^{3+} - H_2O(c. 6 days)$
60 s		Ligand exchange (nonlabile complex)	$[V(OH_2)_6]^{3+} - H_2O$ (50 s)
1 ms		Ligand exchange (labile complex)	$[Pt(OH_2)_4]^{2+} - H_2O$ (0.4 ms)
1 µs		Intervalence charge transfer	$(H_3N)_5Ru = N N Ru = N$
			(0.5 µs)
1 ns		Ligand exchange (labile complex)	$[Ni(OH_2)_5(py)]^{2+} - H_2O(1 ns)$
10 ps		Ligand association	$Cr(CO)_{5} + THF (10 \text{ ps})$
1 ps		Rotation time in liquid	CH ₃ CN (1 ps)
1 fs		Molecular vibration	Sn-Cl stretch (300 fs)

 Table 21.1
 Representative timescales of chemical and physical processes

* Approximate time at room temperature.

W. H. EEMAN **Table 21.8** Activation parameters for the H_2O exchange reactions $[M(OH_2)_6]^{2+} + H_2^{17}O \rightarrow [M(OH_2)_5(^{17}OH_2)]^{2+} + H_2O$

	$\Delta^{\dagger}H/(kJ mol^{-1})$	$LFSE*/\Delta_0$	(LFSE) [‡] / Δ_0^{\dagger}	$LFAE/\Delta_{0}$	$\Delta^{\ddagger}V/(\text{cm}^3 \text{ mol}^{-1})$
Ti ²⁺ (d ²)		0.8	0.91	-0.11	
V ²⁺ (d ³)	68.6	1.2	1	0.2	-4.1
Cr ²⁺ (d ⁴ , hs)		0.6	0.91	-0.31	
$Mn^{2+}(d^5, hs)$	33.9	0	0	0	-5.4
Fe ²⁺ (d ⁶ , hs)	31.2	0.4	0.46	-0.06	+3.8
Co ²⁺ (d ⁷ , hs)	43.5	0.8	0.91	-0.11	+6.1
Ni ²⁺ (d ⁸)	58.1	1.2	1	0.2	+7.2

* Octahedral. + Square pyramidal. hs, high spin.

Ligand	$k_{r,obs}$ (dm ³ mol ⁻¹ s ⁻¹)	$K_{\rm E}/({\rm dm^3\ mol^{-1}})$	$(k_{r,obs}/K_E)/s^{-1}$
CH ₃ CO ₂	1×10^{5}	3	3×10^{4}
F ⁻	8×10^{5}	1	8×10^{3}
HF	3×10^{3}	0.15	2×10^4
H ₂ O*			3×10^{3}
NH ₃	5×10^{3}	0.15	3×10^4
$[NH_2(CH_2)_2NH_3]^+$	4×10^{2}	0.02	2×10^{4}
SCN-	6×10^{3}	1	6×10^{3}

Table 21.6 Complex formation by the $[Ni(OH_2)_6]^{2+}$ ion

* The solvent is always in encounter with the ion so that $K_{\rm E}$ is undefined and all rates are inherently first order.

W. H.

Typical form of reaction profile for dissociative mechanism

W. H.

Inorganic Chemistry Chapter 1: Figure 21.3

W. H.

Inorganic Chemistry Chapter 1: Figure 21.4

Use of trans-effect in synthesis:

Trans Effect vs. Trans Influence

- Trans effect: A strong σ-donor or πacceptor ligand greatly accelerates substitution of a ligand that lies in the position trans to it.
- Trans Influence: Extent to which the ligand T weakens the bond trans to itself in the ground state of the complex. Correlates with σ-donating ability.

The trans effect

0

- The rates of substitution in square planar complexes depend strongly on the nature of the ligand *trans* to the leaving group
- Rates are enhanced by good
 σ donors and π acceptors

Table 14.4 The effect of the trans ligand in reactions of trans-[PtCi[PEt_]2L]

L	k_{1}/s^{-1}	k ₂ /(L mol ⁻¹ s ⁻¹)
CH ₂	1.7×10^{-4}	6.7×10^{-2}
C ₆ H ₆	3.3×10^{-5}	1.6×10^{-2}
CI-	1.0×10^{-6}	4.0×10^{-4}
н-	1.8×10^{-2}	4.2
PEt ₃	1.7×10^{-2}	3.8

- $\ T \ \sigma \ donor: \ OH^{\text{-}} < NH_3 < Cl^{\text{-}} < Br^{\text{-}} < CN^{\text{-}}, \ CO, \ CH_3^{\text{-}} < I_{\text{-}} < SCN^{\text{-}} < PR_3 < H^{\text{-}}$
- T π acceptor: Br \leq I \leq NCS \leq CN \leq CO, C₂H₄

Substitution in square planar complexes

- Stereochemistry is typically preserved during substitution suggesting that there is no long lived intermediate capable of rearranging
- The substitution reactions of square planar complexes are usually associative (a)
 - rates are strongly influenced by the nucleophile
 - » suggests an associative mechanism

0

- rates are also strongly influenced by the group trans to the leaving group
 - » implies that the trans group somehow stabilizes the transition state or destabilizes/stabilizes the starting material
- leaving group also has some effect

Is there a cis effect?

